metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Seik Weng Ng,^a* Sheng-Zhi Hu,^b Ibrahim Abdul Razak^c and Hoong-Kun Fun^c

^aInstitute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^bDepartment of Chemistry, Xiamen University, Xiamen 361005, China, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.043 wR factor = 0.105 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[hexaaquacerium(III)] tetraaquacopper(II) tetrasquarate dihydrate

The cerium ion in the title compound, $[Ce(OH_2)_6]_2[Cu-(OH_2)_4](C_4O_4)_4\cdot 2H_2O$, is nine-coordinate in a monocapped square-prismatic geometry. The squarate (3,4-dihydroxy-3-cyclobutene-1,2-dionate) group links the cerium and copper ions into a three-dimensional network structure.

Received 26 October 2000 Accepted 27 November 2000 Online 14 December 2000

Comment

Copper(II)-lanthanide(III) complexes having the squarate group to link the the copper and lanthanide cations are potential precursors to high-temperature superconductors as such complexes can be thermally decomposed to the oxides. Only four have been structurally characterized; the lanthanum complex exists as $[La_2Cu(C_4O_4)_4(H_2O)_{16}]\cdot 2H_2O$, and the gadolinium and yttrium complexes as [Ln₂Cu(C₄O₄)₄-(H₂O)₁₂]·2H₂O (Bouayad et al., 1992). The La atom is coordinated by nine O atoms, and its geometry is assigned a monocapped square antiprism. The mixed lanthanumsamarium complex has statistically disordered La atoms; one is assigned a tricapped trigonal prismatic geometry and the other a monocapped square antiprismatic geometry (Shi et al., 1995). The assignment is, however, doubtful as the structure appears to have been refined in an unnecessarily lowsymmetry space group (Ng & Hu, 2001). The lanthanum, the lanthanum-samarium and the title, (I), cerium dihydrates are isomorphous.

Experimental

Complex (I) was synthesized from squaric acid, copper chloride and cerium nitrate by using the procedure for the preparation of the lanthanum complex (Bouayad *et al.*, 1992). Two molar equivalents of betaine were added to the mixture in an attempt to synthesize the betaine adduct; however, only (I) separated from solution.

Crystal data

$[Ce(H_2O)_6]_2[Cu(H_2O)_4]$ -	$D_x = 2.236 \text{ Mg m}^{-3}$
$(C_4O_4)_4 \cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 1116.23$	Cell parameters from 8181
Monoclinic, $P2_1/c$	reflections
$a = 6.7685 (1) \text{ Å}_{1}$	$\theta = 1.3-28.3^{\circ}$
b = 32.2337(1)Å	$\mu = 3.46 \text{ mm}^{-1}$
c = 8.1730(1) Å	T = 298 (2) K
$\beta = 111.578 \ (1)^{\circ}$	Plate, yellow
V = 1658.17 (3) Å ³	$0.32 \times 0.18 \times 0.04 \text{ mm}$
Z = 2	

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

The hydrogen-bonding interactions and coordination of the metal ions.

Data collection

Siemens CCD area-detector	4037 independent reflections
diffractometer	3283 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.075$
Absorption correction: multiscan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 5$
$T_{\min} = 0.404, \ T_{\max} = 0.874$	$k = -42 \rightarrow 34$
11 717 measured reflections	$l = -9 \rightarrow 10$

Refinement

Refinement on F^2	H-atom parameters not refined
$R[F^2 > 2\sigma(F^2)] = 0.043$	$W = 1/[\hat{\sigma^2}(F_o^2) + (0.0378P)^2]$
$wR(F^2) = 0.105$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4037 reflections	$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -2.62 \text{ e } \text{\AA}^{-3}$

Table 1				
Selected	geometric pa	arameters (Å,	°).

0	•		
Ce1-O1	2.456 (4)	Ce1-O6W	2.568 (4)
Ce1-O3 ⁱ	2.429 (4)	Cu1-O5	1.957 (4)
Ce1-O6	2.525 (3)	Cu1-O5 ⁱⁱ	1.957 (4)
Ce1-O1W	2.635 (4)	Cu1-O7W	1.984 (4)
Ce1-O2W	2.540 (4)	$Cu1 - O7W^{ii}$	1.984 (4)
Ce1-O3W	2.523 (4)	Cu1-O8W	2.427 (4)
Ce1-O4W	2.582 (4)	Cu1-O8W ⁱⁱ	2.427 (4)
Ce1-O5W	2.613 (4)		
O1-Ce1-O3 ⁱ	86.0 (1)	O2W-Ce1-O3W	76.1 (1)
O1-Ce1-O6	138.5 (1)	O2W-Ce1-O6W	69.3 (1)
O1-Ce1-O1W	62.5 (1)	O2W-Ce1-O4W	141.8 (1)
O1-Ce1-O2W	75.3 (1)	O2W-Ce1-O5W	104.7 (1)
O1-Ce1-O3W	81.2 (1)	O3W-Ce1-O4W	79.7 (1)
O1-Ce1-O4W	129.3 (1)	O3W-Ce1-O5W	132.0 (1)
O1-Ce1-O5W	146.5 (1)	O3W-Ce1-O6W	142.0 (1)
O1-Ce1-O6W	75.5 (1)	O4W-Ce1-O6W	138.0 (1)
O3 ⁱ -Ce1-O6	135.0 (1)	O4W-Ce1-O5W	71.2 (1)
$O3^{i}$ -Ce1-O1W	71.7 (1)	O5W-Ce1-O6W	73.5 (1)
$O3^{i}$ -Ce1-O2W	134.2 (1)	$O5-Cu1-O5^{ii}$	180.0
$O3^{i}$ -Ce1-O3W	142.3 (1)	O5-Cu1-O7W	91.8 (2)
$O3^{i}$ -Ce1-O4W	81.5 (1)	$O5-Cu1-O7W^{ii}$	88.2 (2)
$O3^{i}-Ce1-O5W$	69.9 (1)	O5-Cu1-O8W	92.9 (1)
$O3^{i}-Ce1-O6W$	65.8 (1)	$O5-Cu1-O8W^{ii}$	87.1 (1)
O6-Ce1-O1W	127.1 (1)	$O5^{ii}$ -Cu1-O7W	88.2 (2)
O6-Ce1-O2W	70.4 (1)	$O5^{ii}$ -Cu1-O7W ⁱⁱ	91.8 (2)
O6-Ce1-O3W	68.7 (1)	$O5^{ii}$ -Cu1-O8W	87.1 (2)
O6-Ce1-O4W	73.5 (1)	$O5^{ii}-Cu1-O8W^{ii}$	92.9 (2)
O6-Ce1-O5W	66.9 (1)	$O7W-Cu1-O7W^{n}$	180.0
O6-Ce1-O6W	111.9 (1)	O7W-Cu1-O8W	95.8 (2)
O1W-Ce1-O2W	129.2 (1)	$O7W$ -Cu1-O8 W^{ii}	84.2 (2)
O1W-Ce1-O3W	70.9 (1)	$O7W^{n}$ – Cu1 – O8W	84.2 (2)
O1W-Ce1-O4W	66.9 (1)	$O7W^{ii}$ – $Cu1$ – $O8W^{ii}$	95.8 (2)
O1W-Ce1-O5W	126.1 (1)	$O8W-Cu1-O8W^{ii}$	180.00
O1W-Ce1-O6W	121.0(1)		

Symmetry codes: (i) $x - 1, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) -x, -y, -z.

The final difference map had large peaks and holes near the Ce1 atom.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve

metal-organic papers

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Science Council for R&D, Malaysia (IRPA 09-02-03-0662, 190-9609-2801), for supporting this work.

References

- Bouayad, A., Brouca-Cabarrecq, C., Trobe, J.-C. & Gleizes, A. (1992). Inorg. Chim. Acta, 195, 193–201.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ng, S. W. & Hu, S.-Z. (2001). Acta Phys. Chim. Sin. In the press.
- Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, J.-M., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H., Wang, G.-L., Wang, R.-J., Wang, H.-G. & Yao, X.-K. (1995). Jiegou *Huaxue* (*Chin. J. Struct. Chem.*), **14**, 102– 107.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.